Friday, May 15, 2020

GYRO COMPASS 2nd MATE (F.G.) – MMD EXAMS SOLVED Past Question Paper

Q)  What  is  a  free  gyroscope?  What  are  two  properties  of  a  gyroscope?  (Jan20,  Sept-18,  May-17)     
 OR 
With  respect  to  a  free  gyroscope,  with  suitable  figures,  briefly  explain  the following  terms:  Gyroscopic inertia  (May-19,  July-17)       OR
 Q)  With  respect  to  a  free  gyroscope,  with  suitable  figures,  briefly  explain  the following  terms:  Precession  (Jan-20,  May-19,  May-18,  July-17,  Jan-17)      


Ans:-  Gyroscope having  three  degrees  of  freedom  is  called  “FREE  GYROSCOPE”

Properties  of  Free  Gyroscope
1)  Gyroscopic  inertia  or rigidity  in  space. 
2)  Precession. 

1)  Gyroscopic  Inertia:-  A  freely  spinning  gyroscope will  maintain  its  axis  of  spin  in  the same  direction  with  respect  to  space irrespective of  how its  supporting  base is turned.  It  resists  any  attempt  to  change  its  direction  of spin.  Thus  a  free gyroscope has  high  directional  stability.  This  property  is  called  GYROSCOPIC INERTIA  or  RIGIDITY  IN SPACE. 

2)  Precession:-  Precession  is  the  angular  displacement  of  the  spin  axis  of  the gyroscope  when  a  torque  is  applied  to  gyroscope.  Hence,  when  a  torque  is  applied to  the  spin  axis  the  resulting  movement  will  be  in  the  direction  at  right  angle  to the  applied  torque.  Earth  is  also  a  free  gyroscope  pointing  north  axis  toward Polaris  (rigidity  in  space).  We  all  are  also  aware  that  earth  also  possesses  force  of gravity. 

             First  property  of  free  gyro  scope  is  useful.  However,  due  to  the  placing  of  this gyroscope  on  the  surface  of  the  earth  it  will  be  moved  along  the  direction  of  rotation of  the  earth.  As  such  the  gyroscope  will  have  an  apparent  motion.  For  example,  at night  if  the  gyroscope  is  made  to  point  in  the  direction  of  a  star,  then  the  gyroscope will  follow the  star as  the  earth  rotates  and  the  star apparently  moves in  the  sky. 

W.R.T  earth‟s  surface  the  free  gyro  scope  will  not  point  in  a  fix  direction  but  will be  exhibiting  tilt  & drift. 



Q)  How  is  the  Gyro  Compass  System  made  North  Seeking?  (Sept-17,  July-16, Jan-16) 

Ans:-  North  Seeking  Gyro:-   
  In  order to  damp  unwanted  oscillation,  we  need  to  achieve damping  in  tilt. 
  This  is  done  by  means  of  offset  slightly  to  the  east  of  vertical,  resulting  in component  of the  same  force  producing  the  required  torque.   The  magnitude  and  direction  of  this  force  is  pre-calculated  to  achieve  the  required damping  oscillation. 
  The  amplitude  of each  oscillation  is  reduced to  1/3rd  of  previous  oscillation. 
  The  spin  axis  reaches  equilibrium  and  settles  in  a  position  at  which  drifting  is counteracted  by  control  precession  & the  damping  precession  counteracts  tilting. 
  Finally,  the  gyro  settles  in  the  meridian  &  becomes north  seeking. 


Q)  With  respect  to  a  free  gyroscope,  with  suitable  figures,  briefly  explain  the following  terms:  Drift  and  Tilt  (Sept-19,  May-19,  Sept-18,  July-18,  May-18,  July17,  Jan-17) 

Ans:-  W.R.T  earth‟s  surface  the  free  gyro  scope  will  not  point  in  a  fix  direction  but  will be  exhibiting  tilt  & drift. 
Tilt  is  elevation  or  depression  of the  spin  axis  above or below the  horizon. 
Drift  is  the  movement  of the  spin  axis  in  the  direction  of  azimuth. 
Rate  of  tilting  in  degrees  per hour =  15O  sine  Azimuth  * cosine  Latitude 
Rate  of  Drift  in  degrees  per hour = 15O  sine  Latitude 

Tilt:- 
 If a free gyroscope is situated on the equator and lies with its axis East West and horizontal, it can be assumed of as pointing to a star with zero declination and is about to rise. 
 The East End of the gyroscope axis will follow the movement of this star and will tilt upwards as the star rises. 
 After nearly six hours the axis will be vertical and after nearly twelve hours the gyroscope will have turned completely over with the axis again horizontal but now the original East end of the axis would be pointing to the star setting due West. 
 After one sidereal day, the gyroscope would have tilted through 360O and the star would again be rising. 
 This rate of tilting of 360O in a day is a rate of 15O per hour. 
 If the gyroscope had been situated on the equator with its axis lying in the North – South direction, then the North end would be pointing towards the Pole star and would then have no apparent movement relative to the Earth. 
 The rate of tilting thus varies from zero when the axis is lying North – South to a maximum when it is lying East – West. That is the rate of tilting varies as the Sine of the Azimuth. 
 A free gyroscope situated at a pole with its axis horizontal would have an apparent turntable motion due to the Earth‟s rotation. 
 That is it would follow a fixed star around the horizon but it would not rise or set. 
 The rate of tilting thus varies from a maximum when the latitude is 0O to zero when the latitude is 90O. That is the rate of tilting varies as the Cosine of the Latitude. 
 Rate of tilting in degrees per hour = 15O sine Azimuth * cosine Latitude 
 The direction of tilting is such that the end of the gyroscope axis, which lies to the East of the meridian, tilts upwards and the end of the axis, which lies to the West of the meridian tilts downward. 
Drift:- 
 Drift is the apparent movement of a gyroscope in azimuth. 
 A free gyroscope situated at the North Pole with its axis horizontal will have an apparent movement, which is entirely in the horizontal plane. 
 Its axis will appear to move in a clockwise direction when viewed from above. This would be due to the real counter clockwise rotation of the earth beneath, this circular motion causes the gyroscope to drift through 360O in one sidereal day, that is at a rate of 15O per hour. 
 A free gyroscope situated at the equator with its axis horizontal will not drift at all, irrespective of whether its axis is set in the North – South or East – West line. 
 The rate of drift for a gyroscope with its axis horizontal thus varies from a maximum at the poles to zero at the equator. 
  That  is  the  rate  of  drift  varies  as  the  sine  of  the  latitude.  For  a  free  gyroscope  with its  axis  horizontal:  Rate  of Drift  in  degrees  per hour = 15O  sin  Latitude. 
  The  direction  of  drift  depends  upon  hemisphere  so  that  the  North  end  of  a horizontal  gyroscopic  axis  drifts  to  the  eastwards  in  the  Northern  hemisphere  but to  the  Westwards  in  the  southern hemisphere. 




Q)  Explain  the  term  latitude  course  &  speed  error  with  respect  to  the  Gyro Compass.  (March-20,  March-19,  Jan-18,  Sept-17,  July-16,  Jan-16)  
OR 
With  regards  to  Gyro  Compass,  briefly  explain:  Procedure  to  determine  the compass  error  (Jan-17)         
OR 
Explain  the  course  and  speed  correction  of  the  Gyro  and  how  will  you  apply? (May-16)      OR 
Explain  w.r.t. Gyro  Compass  the  terms  „settling  error‟.  (May-18) 


Ans:-  Course,  Speed  and  Latitude  Error (Speed  Error):- 
  The  gyro  compass  settles  in  the  N/S  direction  by  sensing  Earth‟s  spinning  motion. Same  gyro  compass  when  placed  on  a  ship  also  senses  the  ship‟s  motion.  And therefore,  the  axis  of  gyro  compass  settles  in  a  direction  which  is  perpendicular  to the  resultant  of the  Earth‟s surface  speed  and  the  ship‟s velocity. 
  The  direction,  in  which  the  compass  settles,  is  therefore,  different  to  the  direction of  the  True  North  and  depends  on  ship‟s  course,  speed  and  latitude  of  the observer.   
  This  error  also  increases  as  the  observer‟s  latitude  increases.  The  error  is westward  on  all  Northerly  courses  and  vice-versa. 
  In  exactly  E-W  courses,  the  error  is  nil.  In  exactly  N-S  courses,  the  error  is maximum. 
  To compensate  for  speed  error,  a  speed  rider  is  provided,  which  in  association  with the  latitude  rider,  shifts  the  lubber  line  equal  to  speed  error  in  the  appropriate direction. 
  This  error  can  be  corrected  automatically  by  a  mechanism  which  moves  the  lubber line  by  an  amount  equal  to  the  error,  or  it  can  be  found  from  correction  tables  or from  a  portable  correction  calculator and  then  applied  as  necessary. 





Q)  Explain  w.r.t.  Gyro  Compass  the  terms  „tangent  error‟.  (Jan-18)         
OR 
Explain  w.r.t. Gyro  Compass  the  terms  „steaming error‟.  (Jan-19,  May-18) 
Ans:-  Tangent  Error:- 
  On  a  non-pendulous  gyrocompass  where  damping  is  accomplished  by  offsetting the  point  of  application  of  the  force  of  mercury  ballistic,  the  angle  between  the local  meridian  and  the  settling  position  or spin  axis.   
  Where  the  offset  of  the  point  of  application  of  mercury  ballistic  is  to  the  east  of  the vertical  axis  of  the  gyrocompass,  the  settling  position  is  to  the  east  of  the  meridian in  north  latitudes  and  to  the  west  of  the  meridian  in  south  latitudes.   
  The  error  is  so  named  because  it  is  approximately  proportional  to  the  tangent  of the  latitude  in  which  the  gyrocompass  is  operating.   
  The  tangent  latitude  error  varies  from  zero  at  the  equator  to  a  maximum  at  high northern and  southern latitudes. 





Q)  Explain  the  starting procedure  of  gyro  compass  (March-17) 
Ans:- Starting a Gyrocompass 
 A gyro needs time to settle on the meridian, the time taken will depend on the make, model & geographical location of the gyro. 
 The settling time may be between one & several hours, manual provided by the manufacturer has to be consulted before switching on the gyro. 
 If compass has been switched off, it will take longer time to bring compass into use. 
 Following is the procedures for Sperry MK 37 digital. 
 At power-up and prior entering the settling mode, system performs automatic procedure to determine if the equipment is operating within specified parameters. 
 If gyro is stationary the system opts for cold start, if rotating a hot start if programmed. 
 During a cold start, if no heading data is input to system when requested the gyro selects automatic. Once the power is switched on, two bleeps prompts for heading input, if the heading data is not entered within 5 minutes, the gyro switches to an auto level process. (In some older make, the slewing is done manually, a special key is provided for the same which is inserted into a slot). 
 If heading data is fed the rotor is automatically slewed. 
 The rotor is brought up to required speed within 14 minutes and the gyro will subsequently settle within an hour. 
 If heading data is not fed, the gyro will settle within 5 hrs. 

Some more points:- 

 If entered heading is in error by more than 20 deg, gyro may take about 5 hours to settle. 
 Once gyro is settled, synchronize the repeaters (radar & ECDIS also need synchronization.) 
 If speed & latitude is fed manually, it should be done prior to starting the gyro. 
 Once settled, compass error should be checked & compasses should be checked more frequently. 

No comments:

Post a Comment