Trim
- LCG & LCB
- Effect of Loading Discharging and shifting weights on LCG
- Effect of change of volumetric displacement on LCB
- MCTC
- Why
is used instead of
- Effect of change of density on MCTC
- Change of Trim = Change in draft Ford + Change in draft Aft
- Use of Trim Tables
- F is the Centroid of the water plane area
- COF is the point about which the vessel changes her trim
- Change in Draft Aft
- Change in Draft Forward
- Final Forward & Aft Drafts
- Quantity of cargo loaded / discharged to produce a required trim
- Quantity of cargo loaded / discharged to keep forward/ aft draft constant
- Quantity of cargo loaded / discharged to reach a desired forward/ aft draft
- Final draft Forward and aft using M V Hindship
LCG, LCB
Effect of Loading/Discharging and shift of weight on LCG
Effect of change in underwater volume on LCB
Trimming Moment
Moments required to change trim by 1 cm (MCTC)
MCTC=(∆×
/100×LBP)
Why
is used instead of
for MCTC
Effect of change in density on MCTC
Trim= Trimming moment/MCTC
Change in trim = Change in draft forward + Change in draft aft
Use of trim table
Centre of Floatation is centroid of water plane area
LCF is the tipping centre or the pivoting point about which the vessels change her trim
Change in draft aft Ta = (Tc * LCF)/LBP
Change in Draft fwd Tf = [Tc * (LBP-LCF)]/LBP
Calculation of quantity of cargo to be loaded/discharged/shifted to produce a requried trim
|
F |
A |
|
|
Draft |
8.5 |
9.7 |
|
Sinkage |
+ 0.30 |
+ 0.30 |
|
Change
in Trim |
+0.35 |
-0.35 |
Ans |
Final Draft |
9.15 m |
9.65 m |
Calculation of Final FWD/AFT Drafts
- Loads 200 mt 30 m fwd of m/ships
- Disch 250 mt 20 m fwd of amidships
- Shifts 100 mt from 20 m aft of amidships to 20 m fwd of midships
Weight |
Distance
from COF |
TM |
|
|
|
F |
A |
200 (L) |
33 |
6600 |
|
250 (D) |
23 |
|
5750 |
100 (S) |
40 |
4000 |
|
|
Total |
10600 |
5750 |
|
|
F |
A |
|
Draft |
5.8 |
7.0 |
|
Rise |
- 0.02 |
- 0.02 |
|
Change in Trim |
+0.143 |
-0.134 |
ANS: |
Final Draft |
5.923 m |
6.846 m |
Calculation of quantity of cargo to be loaded/discharged to keep forward/aft draught constant
Calculation of quantity of cargo to be loaded/discharged to reach desired forward/aft draft
|
|
F |
A |
|
Draft |
5.70 |
6.30 |
|
Rise |
+ 0.056 |
+
0.056 |
|
Change in Trim |
+0.164 |
-0.156 |
ANS: |
Final Draft |
5.92 m |
6.20
m |
List
- Cross curves of Stability & KN curves
- How to determine GZ from cross/ KN curves
- Effect on GZ values due to shift of weights (Vertical and Horizontal)
- Range of Stability
- Effect of length, Breadth and Freeboard on the curve of Statical Stability
- Angle of List resulting from Transverse and Vertical movement of weight using GZ curve
- Area under GZ curve using GZ curves
Cross curves of stability and KN curves
How to determine GZ from cross/KN curves
- The format of this table is universally adopted on all ships.
- It is prepared for various displacements such that there should not be any need for interpolation.
- As per standard practice, the angles of heel are ---
,
,
,
,
,
,
,
,
and
. The KN values and hence the GZ values are obtained for these angles only, without any interpolation for other angles in-between.
- One more column is provided for the angle of heel at which the deck edge will submerge.
- Using the GZ values for the above angles, a graph is plotted. Various information are calculated by this graph, which helps to decide if the ship’s stability complies with the prescribed criteria.
- D.G. Shipping specially prepared this book for examination purposes, by abridging the actual stability book of a ship built in Vishakhapatnam. To reduce the size of the KN tables, the data was selected for every 500 tons of displacement. Hence the student has to interpolate for the actual displacement to obtain the correct value of KN.
- Furthermore
the table gives KN values for the ship without superstructure (column
A) and with superstructure (column B), for angles of heel from
upwards. This practice has been discontinued on present ships. Hence the student should only use column B for calculating the GZ values.
- The student should carry this book to the examination hall for calculating all examples based on this ship.
Effect on GZ values due to shift of weights
Pure loss of stability
Effect of increased length/breath, freeboard on the curve of stability curves
Calculation of Angle of list resulting from transverse and vertical movement of weight using GZ curves
0 |
5 |
10 |
20 |
|
KN (m) |
0.0 |
0.793 |
1.581 |
3.130 |
|
0 |
5 |
10 |
20 |
KN (m) |
0.0 |
0.793 |
1.581 |
3.130 |
KG
Sin (-)
|
0 |
0.628 |
1.251 |
2.465 |
Listed
GZ |
0 |
0.165 |
0.330 |
0.665 |
Calculation of Area under GZ curve using Simpson's rule
Angle of heel in⁰ |
10 |
20 |
30 |
40 |
GZ (mtrs) |
0.15 |
0.27 |
0.38 |
0.40 |
GZ |
SM |
Product of Area |
0 |
1 |
0 |
0.15 |
4 |
0.60 |
0.27 |
2 |
0.54 |
0.38 |
4 |
1.52 |
0.40 |
1 |
0.40 |
|
|
|
Dynamical Stability
- Dynamical Stability requirements as per SOLAS
- Dynamical Stability at stated angle of heel represents the potential energy of the ship
- Potential energy is used in overcoming resistance to rolling and producing rotational energy
- Dynamical Stability =
Area under GZ curve
Statical stability requirments as per SOLAS
Dynamical Stability at stated angle of heel represents potential energy of the ship
Potential energy is used in overcoming resistance to rolling and in producing rotational energy
Dynamical stability = W × Area under GZ Curve
|
|
|
|
|
|
|
|
|
|
|
KN |
0.796 |
1.575 |
2.355 |
3.112 |
3.887 |
4.641 |
6.023 |
6.546 |
7.615 |
7.923 |
|
KN |
KG(F) Sin q |
GZ |
Mult. 1 |
Prod. 1 |
Mult. 2 |
Prod. 2 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
|
0.796 |
0.549 |
0.247 |
4 |
0.988 |
|
|
|
1.575 |
1.094 |
0.481 |
2 |
0.962 |
4 |
1.924 |
|
2.355 |
1.630 |
0.725 |
4 |
2.900 |
|
|
|
3.112 |
2.154 |
0.958 |
2 |
1.916 |
2 |
1.916 |
|
3.887 |
2.662 |
1.225 |
4 |
4.900 |
|
|
|
4.641 |
3.149 |
1.492 |
1 |
1.492 |
4 |
5.968 |
|
6.023 |
4.048 |
1.975 |
|
|
1 |
1.975 |
|
6.546 |
4.453 |
2.093 |
|
|
|
|
|
7.615 |
5.454 |
2.161 |
|
|
|
|
|
7.923 |
6.083 |
1.840 |
|
|
|
|
|
|
|
|
|
13.158 |
|
11.783 |
Intact stability requirements for carriage of grain
Intact stability requirements for the carrige of grains
- The angle of heel due to the shift of grain shall not be greater than
or in the case of ships constructed on or after 1 January 1994 the angle at which the deck edge is immersed. whichever is the lesser;
- In
the statical stability diagram, the net or residual area between the
heeling arm curve and the righting arm curve up to the angle of heel of
maximum difference between the ordinates of the two curves, or
or the angle of flooding
, whichever is the least, shall in all conditions of loading be not less than 0.075 metre-radians; and
- The initial metacentric height, after correction for the free surface effects of liquids in tanks. shall be not less than 0.30 m.
Volumetric heeling moments (VHM) caused due to shift of grain in partially filled/full compartments
Use of Maximum permissible VHM curves
* ** ALLOWABLE HEELING MOMENT ** * |
||||||||||
KGo (m) Dispt. (t) |
8.00 |
8.10 |
8.20 |
8.30 |
8.40 |
8.50 |
8.60 |
8.70 |
8.80 |
8.90 |
7000 |
26536 |
26381 |
26226 |
26071 |
25917 |
25762 |
25607 |
25452 |
25297 |
25142 |
7500 |
26795 |
26629 |
26463 |
26298 |
26132 |
25966 |
25800 |
25634 |
25468 |
25302 |
8000 |
26919 |
26742 |
26565 |
26389 |
26212 |
26035 |
25858 |
25681 |
25504 |
25327 |
8500 |
26936 |
26748 |
26560 |
26372 |
26184 |
25996 |
25808 |
25620 |
25432 |
25244 |
9000 |
26871 |
26672 |
26473 |
26274 |
26075 |
25876 |
25677 |
25478 |
25278 |
25079 |
9500 |
26743 |
26533 |
26323 |
26113 |
25903 |
25693 |
25483 |
25273 |
25063 |
24852 |
10000 |
26571 |
26350 |
26129 |
25908 |
25687 |
25466 |
25244 |
25023 |
24802 |
24581 |
10500 |
26372 |
26139 |
25907 |
25675 |
25443 |
25211 |
24978 |
24746 |
24514 |
24282 |
11000 |
26162 |
25919 |
25676 |
25433 |
25189 |
24946 |
24703 |
24459 |
24216 |
23973 |
11500 |
25950 |
25696 |
25441 |
25181 |
24933 |
24678 |
24424 |
24170 |
23915 |
23661 |
12000 |
25715 |
25450 |
25184 |
24919 |
24654 |
24388 |
24123 |
23857 |
23592 |
23327 |
12500 |
25474 |
25197 |
24921 |
24645 |
24368 |
24092 |
23815 |
23539 |
23262 |
22986 |
13000 |
25241 |
24954 |
24666 |
24379 |
24091 |
23804 |
23516 |
23229 |
22941 |
22654 |
13500 |
25003 |
24704 |
24406 |
24107 |
23809 |
23510 |
23212 |
22913 |
22614 |
22316 |
14000 |
24761 |
24452 |
24142 |
23833 |
23523 |
23213 |
22904 |
22594 |
22284 |
21975 |
14500 |
24530 |
24210 |
23889 |
23568 |
23247 |
22927 |
22606 |
22285 |
21965 |
21644 |
15000 |
24305 |
23973 |
23641 |
23310 |
22978 |
22646 |
22314 |
21983 |
21651 |
21319 |
15500 |
24085 |
23742 |
23399 |
23056 |
22713 |
22371 |
22028 |
21685 |
21342 |
20999 |
16000 |
23875 |
23521 |
23167 |
22813 |
22459 |
22105 |
21751 |
21398 |
21044 |
20690 |
16500 |
23677 |
23312 |
22947 |
22582 |
22217 |
21852 |
21488 |
21123 |
20758 |
20393 |
17000 |
23493 |
23117 |
22742 |
22366 |
21990 |
21614 |
21238 |
20862 |
20486 |
20110 |
17500 |
23321 |
22934 |
22547 |
22160 |
21773 |
21386 |
20999 |
20612 |
20225 |
19838 |
18000 |
23162 |
22764 |
22366 |
21968 |
21569 |
21171 |
20773 |
20375 |
19977 |
19579 |
18500 |
23022 |
22613 |
22203 |
21794 |
21385 |
20976 |
20567 |
20158 |
19748 |
19339 |
19000 |
22895 |
22475 |
22054 |
21634 |
21214 |
20794 |
20374 |
19953 |
19533 |
19113 |
19500 |
22779 |
22348 |
21917 |
21485 |
21054 |
20623 |
20191 |
19760 |
19329 |
18898 |
20000 |
22684 |
22242 |
21799 |
21357 |
20915 |
20472 |
20030 |
19588 |
19145 |
18703 |
20500 |
22606 |
22152 |
21699 |
21246 |
20792 |
20339 |
19885 |
19432 |
18979 |
18525 |
21000 |
22537 |
22072 |
21608 |
21143 |
20679 |
20215 |
19750 |
19286 |
18821 |
18357 |
21500 |
22488 |
22012 |
21537 |
21061 |
20586 |
20110 |
19635 |
19159 |
18684 |
18208 |
22000 |
22459 |
21972 |
21486 |
20999 |
20513 |
20026 |
19539 |
19053 |
18566 |
18080 |
22500 |
22438 |
21941 |
21443 |
20945 |
20448 |
19950 |
19452 |
18955 |
18457 |
17960 |
23000 |
22433 |
21925 |
21416 |
20907 |
20399 |
19890 |
19381 |
18873 |
18364 |
17855 |
23500 |
22449 |
21929 |
21409 |
20890 |
20370 |
19850 |
19331 |
18811 |
18291 |
17771 |
24000 |
22476 |
21945 |
21415 |
20884 |
20353 |
19822 |
19291 |
18761 |
18230 |
17699 |
24500 |
22517 |
21975 |
21433 |
20891 |
20350 |
19808 |
19266 |
18724 |
18182 |
17640 |
25000 |
22578 |
22025 |
21472 |
20919 |
20366 |
19813 |
19260 |
18707 |
18154 |
17602 |
25500 |
22651 |
22087 |
21523 |
20959 |
20395 |
19831 |
19267 |
18703 |
18139 |
17575 |
26000 |
22736 |
22161 |
21586 |
21011 |
20435 |
19860 |
19285 |
18710 |
18135 |
17560 |
26500 |
22838 |
22252 |
21666 |
21079 |
20493 |
19907 |
19321 |
18735 |
18149 |
17563 |
27000 |
22955 |
22358 |
21760 |
21163 |
20566 |
19969 |
19372 |
18775 |
18178 |
17580 |
27500 |
23084 |
22476 |
21868 |
21260 |
20651 |
20043 |
19435 |
18827 |
18218 |
17610 |
28000 |
23230 |
22611 |
21992 |
21373 |
20753 |
20134 |
19515 |
18896 |
18276 |
17657 |
28500 |
23393 |
22762 |
22132 |
21502 |
20872 |
20241 |
19611 |
18981 |
18350 |
17720 |
29000 |
23566 |
22925 |
22283 |
21642 |
21001 |
20359 |
19718 |
19076 |
18435 |
17794 |
29500 |
23755 |
23102 |
22450 |
21797 |
21145 |
20492 |
19840 |
19188 |
18535 |
17883 |
30000 |
23959 |
23296 |
22632 |
21969 |
21305 |
20642 |
19978 |
19315 |
18651 |
17988 |
30500 |
24174 |
23500 |
22825 |
22151 |
21476 |
20802 |
20127 |
19452 |
18778 |
18103 |
31000 |
24402 |
23716 |
23031 |
22345 |
21660 |
20974 |
20288 |
19603 |
18917 |
18231 |
31500 |
24645 |
23948 |
23252 |
22555 |
21858 |
21162 |
20465 |
19768 |
19072 |
18375 |
Calculation of Heeling arm
=VHM/(SF
) and
= 0.8 x
|
KN(m) |
KGSin |
GZ (m) |
0 |
0 |
0 |
0 |
5 |
0.811 |
7.743
Sin5 |
0.136 |
12 |
1.925 |
7.743Sin12 |
0.315 |
20 |
3.12 |
7.743Sin20 |
0.742 |
30 |
4.475 |
7.743Sin30 |
0.604 |
40 |
5.608 |
7.743Sin40 |
0.631 |
60 |
7.268 |
7.743Sin60 |
0.562 |
75 |
7.727 |
7.743Sin75 |
0.248 |
Station( |
Ordinate (GZ in m) |
SM |
POA |
6.5 |
0 |
1 |
0 |
12.08 |
0.135 |
4 |
0.54 |
17.67 |
0.255 |
2 |
0.51 |
23.25 |
0.345 |
4 |
1.38 |
28.83 |
0.41 |
2 |
0.82 |
34.42 |
0.445 |
4 |
1.78 |
40 |
0.451 |
1 |
0.451 |
Sum POA=5.481 |
No comments:
Post a Comment